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I. Équations différentielles ordinaires  
 
Les Équations Différentielles Ordinaires (EDO) jouent un rôle central dans la modélisation de 
phénomènes physiques, biologiques, économiques, et bien d'autres domaines. Une EDO est une 
équation qui lie une fonction inconnue à ses dérivées. 
Elles sont de la forme : 

𝐹"𝑥, 𝑦, 𝑦!, 𝑦!!, … , 𝑦(#)' = 0 
 
 

I.1. Équations différentielles d’ordre 1 
 
Exemples : 
La vitesse de désintégrations nucléaires spontanées dans le temps est proportionnelle au nombre de 
noyaux 𝑁(𝑡). 
Cela se représente par l'équation différentielle suivante : 

𝑑𝑁(𝑡)
𝑑𝑡 = −𝜆𝑁(𝑡) 

où 𝜆 est une constante de désintégration homogène à l’inverse du temps. 
 
Cette équation peut être intégré directement, avec la solution : 

𝑁(𝑡) = 𝑁%𝑒&'( 
 
On retrouve aussi cette équation pour modéliser l’évolution d’une population avec le modèle de 
Malthus : 
On considère une population représentée par la 𝑁 en fonction du temps. 
On supposera le taux de renouvellement de la population constant, et on le nommera 𝑎, et le taux 
de mortalité de la population constant que l’on nommera 𝑏. 
𝜆 sera le taux de d’accroissement absolu de la population : 𝜆 = 𝑎 − 𝑏. 
La variation annuelle de la taille de la population peut être quantifiée à l’aide de la quantité )*(()

)(
. 

On a ainsi : 
𝑑𝑁(𝑡)
𝑑𝑡 = 𝑎𝑁(𝑡) − 𝑏𝑁(𝑡) = 𝜆𝑁(𝑡) 

 
On retrouve le même type d’équation que pour la désintégration nucléaire. 
 
 
Pour une équation différentielle d’ordre 1 sans second membre du type (donc à coefficients 
constants) : )+

)(
	+ 	+(()

,
	= 	0, on retiendra que la solution exacte est : 𝑢(𝑡) = 𝑢%𝑒

&!" où 𝑢% dépendra 
des conditions initiales. 
 
Pour résoudre une équation différentielle d’ordre 1 à coefficients constants et avec second membre 
du type : : )+

)(
	+ 	+(()

,
	= 	𝑎, on retiendra que la solution générale est : 𝑢(𝑡) = 𝑢%𝑒

&!" + 𝜏𝑎 où 𝑢% 
dépendra des conditions initiales. 
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Dans un cas plus général, pour une équation différentielle d’ordre 1 à coefficient non constant de la 
forme suivante : 

8𝑦
!(𝑥) = 𝑓"𝑥, 𝑦(𝑥)'		∀𝑥 ∈ [𝑎, 𝑏]
𝑦(𝑎) = 𝑦%																																							

 

on parle d’un problème à valeur initiale ou problème de Cauchy. 
En faisant l’hypothèse que 𝑓 est une fonction continue de deux variables vérifiant, de plus, une 
condition de Lipschitz par rapport à sa deuxième variable, c’est-à-dire que tout tout couple de 
valeurs 𝑦- et 𝑦. , il existe 𝐿 ≥ 0 telle que : 

|𝑓(𝑥, 𝑦-) − 𝑓(𝑥, 𝑦.)| ≤ 𝐿|𝑦- − 𝑦.|			∀𝑥 ∈ [𝑎, 𝑏] 
le problème admet une solution unique 𝑦 pour toute valeur initiale 𝑦%. 
 
Considérons une équation du type : 𝑦! + 𝑎(𝑥)𝑦 = 𝑏(𝑥). 
 
Dans un premier temps, on résout l’équation homogène sans second membre :  

𝑦-! + 𝑎(𝑥)𝑦- = 0 ⇔ 𝑦-! = −𝑎(𝑥)𝑦- ⇔
𝑑𝑦-
𝑑𝑥 = −𝑎(𝑥)𝑦- 

On obtient ainsi l’équation suivante : 
𝑑𝑦-
𝑦-

= −𝑎(𝑥)𝑑𝑥 

On obtient une solution du type : 
𝑦- = 𝐶𝑒&/(0)	𝑜ù	𝐴	𝑒𝑠𝑡	𝑢𝑛𝑒	𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒	𝑑𝑒	𝑎 

 
Ensuite, on cherche une solution particulière de notre équation avec second membre en utilisant la 
méthode de la variation de la constante : 
On va considérer qu’une solution particulière sera de la forme 𝑦1 = 𝐶(𝑥)𝑒&/(0) où 𝐶(𝑥) est une 
fonction de 𝑥. 
On obtient la solution générale de notre équation en concaténant les deux solutions : 𝑦- + 𝑦1. 
 
Un exemple sera plus parlant ;) 
Résolvons sur ℝ l’équation différentielle suivante : 

𝑦! +
2
𝑥 𝑦 = 𝑡. 

L’équation homogène associée est : 𝑦! + .
0
𝑦 = 0. 

 
Les solutions sont de la forme : 𝑦- = 𝐶𝑒&/(0)	𝑜ù	𝐴	𝑒𝑠𝑡	𝑢𝑛𝑒	𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒	𝑑𝑒 − .

0
. 

Une primitive de − .
0
 est −2 ln(𝑥) = ln(𝑥&.). 

D’où : : 𝑦- = 𝐶𝑒2340#$5 = 𝐶𝑥&. = 6
0$

. 
 
Variation de la constante : 
Cherchons une solution particulière sous la forme : 𝑦1 =

6(0)
0$

. 

Ainsi : : 𝑦′1 =
6%(0)
0$

+ 𝐶(𝑥). &.
0&

 
En injectant dans notre équation différentielle, on obtient : 
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𝑦′1 +
2
𝑡 𝑦1 = 𝑥. ⟺

𝐶!(𝑥)
𝑥. + 𝐶(𝑥).

−2
𝑥7 +

2
𝑥 (
𝐶(𝑥)
𝑥. ) = 𝑥. 

⟺
𝐶!(𝑥)
𝑥. + 𝐶(𝑥).

−2
𝑥7 + 2

𝐶(𝑥)
𝑥7 = 𝑡. ⟺

𝐶!(𝑥)
𝑥. = 𝑥. ⟺ 𝐶!(𝑥) = 𝑥8 

On trouve ainsi que 𝐶(𝑥) = 0'

9
. 

On a : 𝑦1 =
6(0)
0$

=
('

'
0$
= 0&

9
. 

La solution générale est donc de la forme : 𝑦(𝑥) = 6
0$
+ 0&

9
 où 𝐶 ∈ ℝ. 

 
 

I.1. Équations différentielles d’ordre 2 
 
Exemples : L’oscillateur harmonique 
On retrouve l’oscillateur harmonique pour décrire un modèle physique au voisinage d’un point 
d’équilibre (dans des domaines tels que la mécanique, l’électricité ou l’électronique). 
 

• Système masse – ressort : 
Le ressort ayant une raideur 𝑘, On peut montrer que l'équation du mouvement de 
la masse s'écrit : 

𝑑.𝑥
𝑑𝑡. + 𝜔%

.𝑥(𝑡) = 0	𝑎𝑣𝑒𝑐	𝜔% = X𝑘
𝑚 

On obtient comme solution si la vitesse initiale est nulle: 
𝑥(𝑡) = 𝑥:cos(𝜔%𝑡 + 𝜑%) 

où 𝑥:	 est l'amplitude des oscillations et 𝜑% la phase à l'origine, qui dépendent des 
conditions initiales. 
Remarque :  
On peut aussi mettre la solution sous la forme : 

𝑥(𝑡) = 𝛼 cos(𝜔%𝑡) + 𝛽sin	(𝜔%𝑡) 
 

• Circuit LC : 
Le condensateur a été préalablement chargé sous 
une tension E. A l’instant 𝑡	 = 	0, on ferme 
l’interrupteur, ce qui connecte le condensateur à 
la bobine en série. 
La mise en équation aboutie à : 
 

𝑑.𝑢;
𝑑𝑡. +

𝑢;
𝐿𝐶 = 0 

 
 

 On retrouve bien ici, l’équation différentielle d’un oscillateur harmonique : 

𝑑.𝑢;
𝑑𝑡. + 𝜔%.𝑢; = 0	𝑎𝑣𝑒𝑐	𝜔% = X 1

𝐿𝐶 
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II. Schéma d’Euler explicite 
 

II.1. Principe général des méthodes numériques 
 
La solution mathématique d’une équation différentielle est une fonction continue. Or les calculateurs 
numériques ne connaissent pas le concept de fonction continue, ils ne peuvent fournir 
(approximativement) que des valeurs prises par une fonction en un nombre de points finis. 
Tout commence donc par le choix préalable des abscisses 𝑥< pour i variant de 0 à 𝑁 où l’on calcule 
les valeurs approchées de la solution 𝑦 que nous noterons 𝑦<. 
Nous allons donc discrétiser l’intervalle de résolution [𝑎, 𝑏]. 
Nous choisirons des points 𝑥< régulièrement espacés d’un pas ℎ tel que : ℎ = =&>

*
 

 
II.2. Méthode d’Euler explicite (progressive) 

 
Nous voulons résoudre une équation différentielle de la forme : 

8𝑦
!(𝑥) = 𝑓"𝑥, 𝑦(𝑥)'		∀𝑥 ∈ [𝑎, 𝑏]
𝑦(𝑎) = 𝑦%																																							

 

La méthode s’écrit comme suit : 

b𝑦% = 𝑦(𝑎)																								
𝑦#?- = 𝑦# + ℎ𝑓(𝑥#, 𝑦#)

 

 
Nous connaissons 𝑦%, nous avons choisi un pas : 0,1 par exemple. 
On trouve simplement 𝑦- par la relation : 𝑦- = 𝑦% + ℎ𝑓(𝑥%, 𝑦%). 
Connaissant 𝑦-, on calcule 𝑦. de la même façon, et ainsi de suite. 
 
On parle d’une méthode explicite car l’obtention de 𝑦#?- se fait uniquement avec les valeurs 𝑥# et 
𝑦# et non avec une résolution d’équation par exemple. 
 
Exemple : 
Nous voulons résoudre l’équation différentielle suivante par la méthode d’Euler explicite sur 
l’intervalle [0; 	2]: 
 

b𝑦
!(𝑥) = −2𝑦	
𝑦(0) = 1								 

Choisissons un pas de 0,1. 
La méthode donne : 

b 𝑦% = 𝑦(𝑎)																						
𝑦#?- = 𝑦# + ℎ(−2𝑦#) = 𝑦#(1 − 2ℎ)

 

 
Nous avons : 𝑦% = 1 

𝑦- = 𝑦%(1 − 2 × ℎ) = 1(1 − 2 × 0,1) = 0,8 
𝑦. = 𝑦-(1 − 2 × ℎ) = 0,8(1 − 2 × 0,1) = 0,64 

⋮ 
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II.3. Stabilité de la méthode d’Euler 

 
Il semble intéressant de se demander si la méthode d’Euler est fiable pour tous types d’équations 
différentielles d’ordre 1 et pour tout pas utilisé. 
 
Pour cela, considérons l’équation différentielle suivante : 

b𝑦
!(𝑥) = −𝑦			∀	𝑥 ∈ [0, 30]
𝑦(0) = 1																																 

On remarque que l’intervalle est ici grand, et que nous allons avoir des problèmes si le pas n’est pas 
assez petit. 
La méthode d’Euler nous donne : 

b
𝑦% = 1																						

𝑦#?- = 𝑦# + ℎ(−𝑦#) = 𝑦#(1 − ℎ)
 

 
Voici ce que l’on obtient pour différentes valeurs du pas : 
 

Pas de 2,5 Pas de 2 Pas de 1,5 Pas de 1 

    
 
Nous remarquons ici, que selon le pas choisi, il y a des problèmes de stabilité important qui donnent 
des solutions numériques pour le moins farfelus. 

𝑥% 

𝑦% 

𝑦- 

𝑥- 
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Comment s’assurer de la stabilité de la méthode d’Euler ? 
 
Nous voulons résoudre une équation différentielle de ce type : 

j𝑦
!(𝑥) = −

𝑦
𝜏 			∀	𝑥 ≥ 0	𝑒𝑡	𝜏 > 0

𝑦(0) = 𝑦%																																							
 

 
Nous savons que la solution exacte est : 𝑦(𝑥) = 𝑦%𝑒

&(" 
 
Notre schéma d’Euler va nous fournir les valeurs : 𝑦%, 𝑦-, 𝑦., … , 𝑦#, 𝑦#?-, … 
Nous savons que lim

0⟶?A
𝑦(𝑥) = 0. 

Nous allons donc poser, comme condition de stabilité que :  
lim

#⟶?A
𝑦# = 0 

 
La méthode d’Euler nous donne : 

𝑦#?- = 𝑦# + ℎ m−
𝑦#
𝜏 n = (1 −

ℎ
𝜏)𝑦# 

Nous reconnaissons une suite géométrique de raison (1 − B
,
). 

On peut donc en déduite que : 𝑦# = 𝑦%(1 −
B
,
)#. 

 
Nous savons que lim

#⟶?A
𝑦# = 0 ⟺ o1 − B

,
o < 1 ⟺ −1 < 1 − B

,
< 1 ⟺ 0 < ℎ < 2𝜏. 

 
h et 𝜏 étant tous deux positifs, on retiendra : ℎ < 2𝜏. 
 
On peut améliorer encore notre condition de stabilité en remarquant que la solution exacte ne change 
jamais de signe. 
Pour notre suite (𝑦#) cela implique : 1 − B

,
> 0 ⟺ ℎ < 𝜏. 

On retiendra comme condition de stabilité :  
ℎ < 𝜏 

 
II.4. Erreur avec la méthode d’Euler explicite 

 
Lorsque l'on applique la méthode d'Euler pour résoudre 
une équation différentielle, la solution numérique obtenue 
diffère de la solution exacte. Cette différence est appelée 
erreur de la méthode. Les erreurs dans la méthode 
d'Euler peuvent être classées en deux types principaux : 

• Erreur locale : L'erreur commise à chaque étape 
de la méthode (𝜏#). 

• Erreur globale : L'erreur accumulée au fur et à 
mesure que l'on avance dans les étapes (𝑒#?-). 
 

𝜏) 
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II.4.1. Erreur locale de troncature 
L'erreur locale de troncature est l'erreur commise lors d'une seule étape de la méthode d'Euler. Pour 
comprendre cette erreur, examinons la méthode d'Euler explicitement. 
La méthode d’Euler explicite nous donne : 

𝑦#?- = 𝑦# + ℎ𝑓(𝑥#, 𝑦#) 
 
𝑦# est la réponse approximative à 𝑥#, et 𝑦(𝑥#) est la valeur exacte de la solution à 𝑥#. 
 
L'erreur locale de troncature 𝜏#  est définie comme la différence entre la solution exacte et la solution 
obtenue par la méthode d'Euler après un seul pas de temps, en supposant que la solution exacte au 
pas précédent est connue : 
 

𝜏# = 𝑦(𝑥#?-) − (𝑦(𝑥#) + ℎ𝑓(𝑥#, 𝑦(𝑥#)	) 
En développant 𝑦(𝑥#?-) en série de Taylor à proximité de 𝑥#, on obtient : 

𝑦(𝑥#?-) = 𝑦(𝑥#) + ℎ. 𝑦′(𝑥#) +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜(ℎ
.) 

En remplaçant 𝑦′(𝑥#) par 𝑓(𝑥#, 𝑦(𝑥#)	): 

𝑦(𝑥#?-) = 𝑦(𝑥#) + ℎ. 𝑓(𝑥#, 𝑦(𝑥#)	) +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜(ℎ
.) 

Et on obtient : 

𝜏# =
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜(ℎ
.) 

C’est donc une erreur d’ordre 2. 
Cela signifie que si le pas est divisé par 2, l’erreur sera divisée par 4. 
 

II.4.1. Erreur globale de troncature 
L'erreur globale est l'erreur commise après plusieurs étapes de la méthode d'Euler. Soit 𝑒# l'erreur 
globale à l'étape 𝑛, définie par : 

𝑒# = 𝑦(𝑥#) − 𝑦#	 
L'objectif est de déterminer comment cette erreur se comporte en fonction du nombre d'étapes 𝑛 et 
du pas ℎ. 
À l'étape 𝑛 + 1, on a (avec la méthode d’Euler) : 

𝑦#?- = 𝑦# + ℎ𝑓(𝑥#, 𝑦#)				(1) 
 
Comme vu plus haut, nous avons : 

𝑦(𝑥#?-) = 𝑦(𝑥#) + ℎ. 𝑓(𝑥#, 𝑦(𝑥#)	) +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.)			(2) 

 
L’erreur globale à l’étape 𝑛 + 1 est : 

𝑒#?- = 𝑦(𝑥#?-) − 𝑦#?-					(3) 
 
En utilisant (1) et (2) dans (3), on trouve : 

𝑒#?- = 𝑦(𝑥#) + ℎ. 𝑓(𝑥#, 𝑦(𝑥#)	) +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.) − (𝑦# + ℎ𝑓(𝑥#, 𝑦#)) 

⟺ 𝑒#?- = [𝑦(𝑥#) − 𝑦#] + ℎ. [𝑓(𝑥#, 𝑦(𝑥#)	) − 𝑓(𝑥#, 𝑦#)] +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.) 
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⟺ 𝑒#?- = 𝑒# + ℎ. [𝑓(𝑥#, 𝑦(𝑥#)	) − 𝑓(𝑥#, 𝑦#)] +
ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.)					(4) 

 
En utilisant un développement de Taylor pour 𝑓(𝑥#, 𝑦#) autour de 𝑦(𝑥#)	, on a : 

𝑓(𝑥#, 𝑦#) = 𝑓(𝑥#, 𝑦(𝑥#)	) +
𝜕𝑓
𝜕𝑦
(𝑥#, 𝑦(𝑥#)	). (𝑦# − 𝑦(𝑥#)	) + 𝑜(𝑦# − 𝑦(𝑥#)	) 

⟺ 𝑓(𝑥#, 𝑦#) = 𝑓(𝑥#, 𝑦(𝑥#)	) +
𝜕𝑓
𝜕𝑦
(𝑥#, 𝑦(𝑥#)	). (−𝑒#	) + 𝑜(𝑦# − 𝑦(𝑥#)	) 

 
 
Ce qui permet d’écrire, d’après (4) : 

𝑒#?- = 𝑒# + ℎ.
𝜕𝑓
𝜕𝑦
(𝑥#, 𝑦(𝑥#)	). 𝑒# +

ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.) 

⟺ 𝑒#?- = 𝑒#. (1 + ℎ.
𝜕𝑓
𝜕𝑦
(𝑥#, 𝑦(𝑥#)	) +

ℎ.

2 . 𝑦′′(𝑥#) + 𝑜
(ℎ.) 

 
On voit que l’erreur 𝑒#?- est principalement dû à la propagation de l’erreur 𝑒#, et qu’il y a 
globalement proportionnalité entre 𝑒#?- et 𝑒#. 
 
L’erreur est ici d’ordre 1, ce qui donne que la méthode d’Euler explicite est une méthode d’ordre 1. 
Concrètement, cela signifie que si le pas est divisé par 2, l’erreur globale est divisée par 2. 
 
 

III. TP3 Méthode d’Euler explicite 
 
On choisit τ = 1 et u0 = 1 pour l’équation différentielle )+

)(
	+ 	+(()

,
	= 	0.  

 
1. À la main, appliquez la méthode l’Euler pour 0 ≤ t ≤ 1 avec un pas de 0,1 pour bien comprendre 
cette méthode. 
 
2. Créer une fonction euler_explicite qui permettra de calculer les approximations avec la 
méthode d’Euler pour 0 ≤ t ≤ 1. 
 
3. Tracer sur un même graphe la solution exacte pour 0 ≤ t ≤ 1 et la solution avec la méthode 
d’Euler explicite. 
 
On remarque que cette solution dépend du choix du pas de temps ∆𝑡. 
4. Soit 𝑣(∆𝑡, 𝑡	 = 	1) la valeur approchée de 𝑢(𝑡	 = 	1) à l’instant 𝑡	 = 	1 pour le pas de temps ∆𝑡. 
Tracer la courbe de l’erreur 𝑙𝑜𝑔	|𝑣(∆𝑡, 𝑡 = 1) − 𝑢(𝑡 = 1)|	 en fonction du paramètre 𝑙𝑜𝑔	( -

C(
) pour des 

valeurs de ∆𝑡 qu’on choisira de la manière la plus simple possible. 
Retrouver ce qui a été trouvé dans le cours. 
 
 


