Informatique Appliquée au Calcul Scientifique 2
Séance 4
Equations différentielles ordinaires : exemples fondamentaux
Schéma d’Euler explicite (progressif)
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. Equations différentielles ordinaires

Les Equations Différentielles Ordinaires (EDO) jouent un rdle central dans la modélisation de
phénomenes physiques, biologiques, économiques, et bien d'autres domaines. Une EDO est une
équation qui lie une fonction inconnue a ses dérivées.

Elles sont de la forme :
F(x, vy, y", .., y(")) =0

|.1. Equations différentielles d’ordre 1

Exemples :

La vitesse de désintégrations nucléaires spontanées dans le temps est proportionnelle au nombre de
noyaux N(t).

Cela se représente par 1'équation différentielle suivante :

dN(t)
T —AN(t)

ou A est une constante de désintégration homogene a l'inverse du temps.

Cette équation peut étre intégré directement, avec la solution :
N(t) = Noe_lt

On retrouve aussi cette équation pour medéliser I’évelution d’une population avee le modele de
Malthus :

On considere une population représentée par la N en fonction du temps.

On supposera le taux de renouvellement de la population constant, et on le nommera a, et le taux
de mortalité de la population constant que ’on nommera b.

A sera le taux de d’accroissement absolu de la population : A = a — b.

La variation annuelle de la taille de la population peut étre quantifiée a 1’aide de la quantité dl;—it).

On a ainsi :

“”Z_it) = aN () — BN(E) = AN(2)

On retrouve le méme type d’équation que pour la désintégration nucléaire.

Pour une équation différentielle d’ordre 1 sans second membre du type (donc a coefficients

t
constants) : & + 2O — 0, on retiendra que la solution exacte est : u(t) = upe = ou u, dépendra
dat T 0 0

des conditions initiales.

Pour résoudre une équation différentielle d’ordre 1 a coefficients constants et avec second membre
t
du type : : % + @ = a, on retiendra que la solution générale est : u(t) = uge =+ ta ou u,

dépendra des conditions initiales.




Dans un cas plus général, pour une équation différentielle d’ordre 1 a coefficient non constant de la
forme suivante :
{y'm = f(x,y(x)) Va € [a,b]
y(@) =y,
on parle d’un probléme a valeur initiale ou probleme de Cauchy.
En faisant 'hypothése que f est une fonction continue de deux variables vérifiant, de plus, une
condition de Lipschitz par rapport a sa deuxieme variable, c’est-a-dire que tout tout couple de

valeurs y; et y, , il existe L = 0 telle que :

If(xt,y1) — f(x,y2)| < Lly; —y,| Vx € [a,b]
le probleme admet une solution unique y pour toute valeur initiale y,.

Considérons une équation du type : y' + a(x)y = b(x).

Dans un premier temps, on résout I’équation homogene sans second membre :

, , dy,
yi'+tax)y,=0ey =—-alx)y, © Fre —a(x)y,
On obtient ainsi I’équation suivante :
% = —a(x)dx
V1

On obtient une solution du type :
y; = CeT™® o1 A est une primitive de'a

Ensuite, on cherche une solution particuliere de notre équation avec second membre enutilisant la
méthode dela variation-de la constante :

On va considérer qu'une solution particuliere sera de la forme y, = C (x)e™4™) on C(x) est une
fonction de x.

On obtient la solution générale de notre équation en concaténant les deux solutions : y; + y,.

Un exemple sera plus parlant ;)

Résolvons sur R I’équation différentielle suivante :
2
"+—y=1t2
y xy

L’équation homogene associée est : y' + % y=0.

Les solutions sont de la forme : y; = Ce™4™) ol A est une primitive de — f—c
Une primitive de —% est —21In(x) = In(x~2).
Dol ::y, = Cem™®) =cx2 =5

x2

Variation de la constante :

Cherchons une solution particuliere sous la forme : y, = %
Ainsi : : y', = Cx(zx) + C(x).;—:

En injectant dans notre équation différentielle, on obtient :



’(x) -2 C(x) 5

y,p+_Yp=x2<:> +C()_ ;(xz)zx
c' 2 C(x C
= ()+C()—+2 () t“:)%:x“z}C’(x):x‘L
5
On trouve ainsi que C(x) = ?.
x5
cx) _ 5 _x
Ona:y,= 2 xz—?.

3
La solution générale est donc de la forme : y(x) = x% + x? ou C € R.

|.1. Equations différentielles d’ordre 2

Exemples : L’oscillateur harmonique
On retrouve l'oscillateur harmonique pour décrire un modele physique au voisinage d’'un point
d’équilibre (dans des domaines tels que la mécanique, ’électricité ou ’électronique).

e Systéme masse — ressort :
Le ressort ayant une raideur k, On peut montrer que 1'équation du mouvement de
la masse s'écrit :
d?x k

72 + w3x(t) = 0.avec wy = -

On/obtient comme solution si la vitesse initiale est nulle:
x(t) = xpmcos(wot + @p)
ou x,, est l'amplitude des oscillations et ¢, la phase a l'origine, qui dépendent des
conditions initiales.
Remarque :

On peut aussi mettre la solution sous la forme :
x(t) = acos(wyt) + Bsin (wyt)

e Circuit LC :
Le condensateur a été préalablement chargé sous

une tension E. A linstant t = 0, on ferme vi(t)
I'interrupteur, ce qui connecte le condensateur a
la bobine en série. uc(t)) —__—_C L% ur(t)

La mise en équation aboutie a :

d*u, u,
<=0
dt? * LC

On retrouve bien ici, ’équation différentielle d’un oscillateur harmonique :

dzuc+ 2 0 e
wiue = 0 avec wy = 7=




Il. Schéma d’Euler explicite

[I.1. Principe général des méthodes numériques

La solution mathématique d’une équation différentielle est une fonction continue. Or les calculateurs
numériques ne connaissent pas le concept de fonction continue, ils ne peuvent fournir
(approximativement) que des valeurs prises par une fonction en un nombre de points finis.

Tout commence donc par le choix préalable des abscisses x; pour i variant de 0 a N ou l’on calcule
les valeurs approchées de la solution y que nous noterons y;.

Nous allons donc discrétiser 'intervalle de résolution [a, b].

. . , AN , b-a
Nous choisirons des points x; régulierement espacés d’un pas h tel que : h = e

I1.2. Méthode d’Euler explicite (progressive)

Nous voulons résoudre une équation différentielle de la forme :
{y’(x) = f(x,y(x)) Vx € [a,b]
y(a) =y,
La méthode s’écrit comme suit :
{3’0 =y(a@)
VYn+1 = Yo + hf (n, y)

Nous connaissons yg, nous avons choisi un-pas : 0,1 par exemple.
On trouve simplement y, par la relation : y; = yo + hf(xq, yo)-
Connaissant-y;, on calcule vy, de la méme facon, -et-ainsi de suite.

On parle d’une méthode explicite car 'obtention de y, ., se fait uniquement avec les valeurs x,, et

Y, et non avec une résolution d’équation par exemple.

Exemple :
Nous voulons résoudre ’équation différentielle suivante par la méthode d’Euler explicite sur
I'intervalle [0; 2]:

{y’(x) = -2y
y(0) =1
Choisissons un pas de 0,1.
La méthode donne :
{ Yo =y(a)
Yn+1 = Yn T h(_ZYn) = Yn(l - Zh)

Nous avons : y, =1
y1=Y(1-2xh)=1(1-2x01)=08
y2 =y1(1=2xh)=08(1-2x0,1) = 0,64



Méthode d'Euler appliquée a y' = -2y

1.0 - —&— Méthode d'Euler
—— Solution exacte

y(t)

X1

0 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
t

[1.3. Stabilité de la méthode d’Euler

Il' semble intéressant de se demander si la méthode d’Euler est fiable pour tous types d’équations

différentielles d’ordre 1 et pour tout pas utilisé.

Pour cela, considérons I’équation différentielle suivante :
{y’(x) =—y Vx€[0,30]
y(0)=1
On remarque que l'intervalle est ici grand, et que nous allons avoir des problemes si le pas n’est pas
assez petit.
La méthode d’Euler nous donne :
{ Yo=1
Yn+1 = Yn + h(=yn) = yo(1 —h)

Voici ce que 'on obtient pour différentes valeurs du pas :

Pas de 2,5 Pas de 2 Pas de 1,5 Pas de 1

=&~ Méthode d'Euler 1.00 —e— Méthode d'Euler 10 —e— Méthode d'Euler 10 —e~ Méthode d'Euler
— Solution exacte — Solution exacte — solution exacte —— solution exacte

Nous remarquons ici, que selon le pas choisi, il y a des problémes de stabilité important qui donnent

des solutions numériques pour le moins farfelus.



Comment s’assurer de la stabilité de la méthode d’Euler ?

Nous voulons résoudre une équation différentielle de ce type :
y'(x) = —% Vx=>0ett>0

y(0) =y,
Nous savons que la solution exacte est : y(x) = yje =

Notre schéma d’Euler va nous fournir les valeurs : yo, ¥1, Y2, <) Y Vnt1s -
Nous savons que lim y(x) = 0.

X—+00
Nous allons donc poser, comme condition de stabilité que :

lim y, =
n—+oo

La méthode d’Euler nous donne :
_ Y\ _ h
Yn+1 =Yn T h (_ ?) - (1 T)Yn
Nous reconnaissons une suite géométrique de raison (1 — g)

On peut donc en déduite que : y, = yo(1 — %)”.
Nowus sayons que lirJrrl yn=0(=>|1—g|<1(:>—1<1—%<1(=>0<h<21.
n—+oo

h'et T étant tous deux positifs, on retiendra : h < 27.

On peut améliorer encore notre condition de stabilité en remarquant que la solution exacte ne change
jamais de signe.

Pour notre suite (y,) cela implique : 1 — % >0 h<rT.

On retiendra comme condition de stabilité :
h<rt

[I.4. Erreur avec la méthode d’Euler explicite

Lorsque 1'on applique la méthode d'Euler pour résoudre
une équation différentielle, la solution numérique obtenue
differe de la solution exacte. Cette différence est appelée

erreur de la méthode. Les erreurs dans la méthode
d'Euler peuvent étre classées en deux types principaux :
e Erreur locale : L'erreur commise a chaque étape
de la méthode (7).
e Erreur globale : L'erreur accumulée au fur et a Yn

mesure que l'on avance dans les étapes (e .
n+1 ; .



[1.4.1. Erreur locale de troncature
L'erreur locale de troncature est 1'erreur commise lors d'une seule étape de la méthode d'Euler. Pour
comprendre cette erreur, examinons la méthode d'Euler explicitement.
La méthode d’Euler explicite nous donne :
Yn+1 = Yn + hf (n, y)

Vv, est la réponse approximative a x,, et y(x,) est la valeur exacte de la solution a x,,.

L'erreur locale de troncature t,, est définie comme la différence entre la solution exacte et la solution
obtenue par la méthode d'Euler apres un seul pas de temps, en supposant que la solution exacte au
pas précédent est connue :

Tn = Y(ne1) — () + hf Ocn, y(x0) )

En développant y(x,,,) en série de Taylor a proximité de x,, on obtient :
2

h
Y (Xn41) = y() + by () + =y () + 0 (h?)

En remplacant y'(x,) par f(x,, y(x,) ):
2

h
Y(xne1) = Y(xn) + h f (X, y(xn) ) + ?-y”(xn) + O(hz)

Et on obtient :
2

— h_ 1 hz
T = 53" () + 0(h?)
C’est donc une erreur d’ordre 2.
Cela signifie que si le pas est divisé par 2;Verreur sera divisée par 4.

[1.4.1. Erreur globale de troncature
L'erreur globale est 1'erreur commise apres plusieurs étapes de la méthode d'Euler. Soit e, 1'erreur
globale a 1'étape n, définie par :
en =Y(Xn) — Yn
L'objectif est de déterminer comment cette erreur se comporte en fonction du nombre d'étapes n et
du pas h.
A l'étape n + 1, on a (avec la méthode d’Euler) :
VYn+1 = Yo + hf O yn) (1)

Comme vu plus haut, nous avons :
2

h
Y(xn+1) = Y(xn) + h f (X, y(xn) ) + 7-}/”(3@1) + o(h?) (2)

L’erreur globale a 1’étape n + 1 est :
en+1 =Y (Xn41) = Yny1  (3)

En utilisant (1) et (2) dans (3), on trouve :
2

h
Cnt1 = y(xn) + h-f(xn' Y(xn) ) + T-y”(xn) + O(hz) - (Yn + hf(xnr yn))

2

h
S enp1 = [Y(xn) = Yul + A [f Cen, y(x0) ) — f G ¥ + ?-y”(xn) +o(h?)



h2
S enr = en +h[f (0, y(x) ) — ot yu)] + 7-}/”(9(7[) +o(h?) (4)

En utilisant un développement de Taylor pour f(x,,y,) autour de y(x,), on a :

d
£ Gt ) = £ (omy (i) ) + é o Y ())- O — Y(x) ) + 00 — ¥(0) )

d
o FGonyn) = fGomy (o) ) + % Gy () ). (—en ) + 03 — ()

Ce qui permet d’écrire, d’apres (4) :
2

af h "
ens1 = €y + h.@(xn,y(xn) ).e, + =Y (x,) + o(h?)

af h? " 5
Sepp =6 (1+ h-@(xn;y(xn) ) +7-y (xn) + o(h?)

On voit que lerreur e,,; est principalement di a la propagation de lerreur e,, et qu’il y a

globalement proportionnalité entre e, et e,.

L’erreur est ici d’ordre 1, ce qui donne que la méthode d’Euler explicite est une méthode d’ordre 1.

Concretement, cela signifie que si le pas est divisé par 2, 'erreur globale est divisée par 2.

II'SLP3 Méthade d'Euler explicite

uw _

On choisit T = 1 et u0 = 1 pour ’équation différentielle Z—l; + .

1. A la main, appliquez la méthode 'Euler pour 0 < t < 1 avec un pas de 0,1 pour bien comprendre

cette méthode.

2. Créer une fonction euler_explicite qui permettra de calculer les approximations avec la
méthode d’Euler pour 0 <t < 1.

3. Tracer sur un méme graphe la solution exacte pour 0 < t < 1 et la solution avec la méthode

d’Euler explicite.

On remarque que cette solution dépend du choix du pas de temps At.

4. Soit v(At,t = 1) la valeur approchée de u(t = 1) a l'instant t = 1 pour le pas de temps At.
Tracer la courbe de l'erreur log |v(At,t = 1) — u(t = 1)| en fonction du parametre log (Ait) pour des
valeurs de At qu’on choisira de la maniere la plus simple possible.

Retrouver ce qui a été trouvé dans le cours.



